Quantum Theory, Groups and Representations
-15%
portes grátis
Quantum Theory, Groups and Representations
An Introduction
Woit, Peter
Springer International Publishing AG
05/2018
668
Mole
Inglês
9783319878355
15 a 20 dias
Descrição não disponível.
Preface.- 1 Introduction and Overview.- 2 The Group U(1) and its Representations.- 3 Two-state Systems and SU(2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of SU(2) and SO(3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schroedinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators, d = 1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary d.- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41Representations of the Lorentz Group.- 42 The Poincare Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45 U(1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Lie algebras;Lie groups;quantization;quantum fields;quantum mechanics;representation theory;Standard Model of particle physics;unitary group representations;two-state systems;Lie algebra representations;rotation and spin groups;momentum and free particle;fourier analysis and free particle;Schroedinger representation;Heisenberg group;Poisson bracket and symplectic geometry;Hamiltonian vector fields;quantum free particle;metaplectic representation;Fermionic oscillator
Preface.- 1 Introduction and Overview.- 2 The Group U(1) and its Representations.- 3 Two-state Systems and SU(2).- 4 Linear Algebra Review, Unitary and Orthogonal Groups.- 5 Lie Algebras and Lie Algebra Representations.- 6 The Rotation and Spin Groups in 3 and 4 Dimensions.- 7 Rotations and the Spin 1/2 Particle in a Magnetic Field.- 8 Representations of SU(2) and SO(3).- 9 Tensor Products, Entanglement, and Addition of Spin.- 10 Momentum and the Free Particle.- 11 Fourier Analysis and the Free Particle.- 12 Position and the Free Particle.- 13 The Heisenberg group and the Schroedinger Representation.- 14 The Poisson Bracket and Symplectic Geometry.- 15 Hamiltonian Vector Fields and the Moment Map.- 16 Quadratic Polynomials and the Symplectic Group.- 17 Quantization.- 18 Semi-direct Products.- 19 The Quantum Free Particle as a Representation of the Euclidean Group.- 20 Representations of Semi-direct Products.- 21 Central Potentials and the Hydrogen Atom.- 22 The Harmonic Oscillator.- 23 Coherent States and the Propagator for the Harmonic Oscillator.- 24 The Metaplectic Representation and Annihilation and Creation Operators, d = 1.- 25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary d.- 26 Complex Structures and Quantization.- 27 The Fermionic Oscillator.- 28 Weyl and Clifford Algebras.- 29 Clifford Algebras and Geometry.- 30 Anticommuting Variables and Pseudo-classical Mechanics.- 31 Fermionic Quantization and Spinors.- 32 A Summary: Parallels Between Bosonic and Fermionic Quantization.- 33 Supersymmetry, Some Simple Examples.- 34 The Pauli Equation and the Dirac Operator.- 35 Lagrangian Methods and the Path Integral.- 36 Multi-particle Systems: Momentum Space Description.- 37 Multi-particle Systems and Field Quantization.- 38 Symmetries and Non-relativistic Quantum Fields.- 39 Quantization of Infinite dimensional Phase Spaces.- 40 Minkowski Space and the Lorentz Group.- 41Representations of the Lorentz Group.- 42 The Poincare Group and its Representations.- 43 The Klein-Gordon Equation and Scalar Quantum Fields.- 44 Symmetries and Relativistic Scalar Quantum Fields.- 45 U(1) Gauge Symmetry and Electromagnetic Field.- 46 Quantization of the Electromagnetic Field: the Photon.- 47 The Dirac Equation and Spin-1/2 Fields.- 48 An Introduction to the Standard Model.- 49 Further Topics.- A Conventions.- B Exercises.- Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Lie algebras;Lie groups;quantization;quantum fields;quantum mechanics;representation theory;Standard Model of particle physics;unitary group representations;two-state systems;Lie algebra representations;rotation and spin groups;momentum and free particle;fourier analysis and free particle;Schroedinger representation;Heisenberg group;Poisson bracket and symplectic geometry;Hamiltonian vector fields;quantum free particle;metaplectic representation;Fermionic oscillator