Course in Functional Analysis and Measure Theory

Course in Functional Analysis and Measure Theory

Iacob, Andrei; Kadets, Vladimir

Springer International Publishing AG

07/2018

539

Mole

Inglês

9783319920030

15 a 20 dias

854

Descrição não disponível.
Introduction.- Chapter 1. Metric and topological spaces.- Chapter 2. Measure theory.- Chapter 3. Measurable functions.- Chapter 4. The Lebesgue integral.- Chapter 5. Linear spaces, linear functionals, and the Hahn-Banach theorem.- Chapter 6. Normed spaces.- Chapter 7. Absolute continuity of measures and functions. Connection between derivative and integral.- Chapter 8. The integral on C(K).- Chapter 9. Continuous linear functionals.- Chapter 10. Classical theorems on continuous operators.- Chapter 11. Elements of spectral theory of operators. Compact operators.- Chapter 12. Hilbert spaces.- Chapter 13. Functions of an operator.- Chapter 14. Operators in Lp.- Chapter 15. Fixed-point theorems and applications.- Chapter 16. Topological vector spaces.- Chapter 17. Elements of duality theory.- Chapter 18. The Krein-Milman theorem and applications.- References. Index.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
MSC (2010): 46-01, 47-01, 28-01;Lebesgue measure;Lebesgue integral;Hahn-Banach theorem;Banach spaces;closed graph theorem;spectrum and eigenvalues;Hilbert space;self-adjoint operator;fixed-point theorems;locally convex spaces;weak topology;Krein-Milman theorem;Lyapunov convexity theorem;Fourier transform;spectral measure