Global Developments in Literacy Research for Science Education

Global Developments in Literacy Research for Science Education

Tang, Kok-Sing; Danielsson, Kristina

Springer International Publishing AG

01/2018

401

Dura

Inglês

9783319691961

15 a 20 dias

793


ebook

Descrição não disponível.
Foreword, Elizabeth Moje.- 1 The expanding development of literacy research in science education around the world, Kok-Sing Tang and Kristina Danielsson.- Part 1 National Curriculum & Initiatives.- 2 The implementation of scientific literacy as basic skills in Norway after the school reform of 2006, Erik Knain and Marianne Odegaard.- 3 But I'm not an English teacher! Disciplinary literacy in Australian science classrooms, Chris Davison and Sue Ollerhead.- 4 Meeting disciplinary literacy demands in content learning: The Singapore perspective, Caroline Ho, Natasha Rappa, and Kok-Sing Tang.- Part 2 Content and Language Integrated Learning (CLIL) in Science.- 5 Learning language and intercultural understanding in science classes in Germany, Silvija Markic.- 6 Supporting English-as-a-foreign-language (EFL) learners' science literacy development in CLIL: A genre-based approach, Yuen Yi Lo, Angel M. Y. Lin, and Tracy C. L. Cheung.- 7 Language, literacy and science learning for English language learners: Teacher meta talk vignettes from a South African science classroom, Audrey Msimanga and Sibel Erduran.- 8 The content-language tension for English language learners in two secondary science classrooms, Jason Wu, Felicia Moore Mensah, and Kok-Sing Tang.- Part 3 Science Classroom Literacy Practices.- 9 A case study of literacy teaching in six middle- and high-school science classes in New Zealand, Aaron Wilson and Rebecca Jesson.- 10 Analyzing discursive interactions in science classrooms to characterize teaching strategies adopted by teachers in lessons on environmental themes, Ana Lucia Gomes Cavalcanti Neto, Edenia Maria Ribeiro do Amaral, and Eduardo Fleury Mortimer.- 11 Measuring time. Multilingual elementary school students' meaning-making in physics , Britt Jakobson, Kristina Danielsson, Monica Axelsson, and Jenny Uddling.- 12 Meaning-making in a secondary science classroom: A systemic functional multimodal discourse analysis, Qiuping He and GailForey.- Part 4 Science Disciplinary Literacy Challenges.- 13 Literacy challenges in chemistry: A multimodal analysis of symbolic formulas, Yu Liu.- 14 Gains and losses: Metaphors in chemistry classrooms, Kristina Danielsson, Ragnhild Loefgren, and Alma Jahic Pettersson.- 15 Image design for enhancing science learning: Helping students build taxonomic meanings with salient tree structure images, Yun-Ping Ge, Len Unsworth, Kuo-Hua Wang, and Huey-Por Chang.- Part 5 Disciplinary Literacy & Science Inquiry.- 16 Inquiry-based science and literacy: Improving a teaching model through practice-based classroom research, Marianne Odegaard.- 17 Infusing literacy into an inquiry instructional model to support students' construction of scientific explanations, Kok-Sing Tang and Gde Buana Sandila Putra.- 18 Representation construction as a core science disciplinary literacy, Russell Tytler, Vaughan Prain, and Peter Hubber.- Part 6 Science Teacher Development.- 19 Science and language experience narratives of pre-service primary teachers learning to teach science in multilingual contexts, Mariona Espinet, Laura Valdes-Sanchez, and Maria Isabel Hernandez.- 20 Examining teachers' shifting epistemic orientations in improving students' scientific literacy through adoption of the Science Writing Heuristic approach, Brian Hand, Soonhye Park, and Jee Kyung Suh.- 21 Developing students' disciplinary literacy? The case of university physics, John Airey and Johanna Larsson.- 22 Commentary on the expanding development of literacy research in science education, Larry Yore.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
science teaching;science learning;English Second Language Learners;chemistry education;multimodal literacy;language in science education;curriculum policy;curriculum development;reading science;writing science;multilingual science classrooms;language of science;secondary science classroom;literacy research for science education;science literacy learning;scientific literacy;disciplinary literacy;science classrooms;content and language integrated learning;intercultural understanding