Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries

Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries

Vanillin, Syringaldehyde, Polyphenols and Polyurethane

Barreiro, Maria Filomena; Fernandes, Isabel; Rodrigues, Alirio Egidio; Pinto, Paula Cristina de Oliveira Rodrigues; Esteves da Costa, Carina Andreia; Ferreira da Mota, Maria Ines

Springer International Publishing AG

10/2018

166

Dura

Inglês

9783319993126

15 a 20 dias

454


ebook

Descrição não disponível.
1. Chemical pulp mills as biorefineries

1.1 General overview: delignification industrial processes

1.2 Side-streams and current recovery cycles of chemicals and energy in typical mills

1.3 The integration of new biorefinery processes in pulp industries

1.4 Lignin: the main side-stream from delignification processes

1.4.1 Types of lignins and up-to-date market

1.4.2 Lignins from new incoming delignification processes

1.4.3 The cost and the revenues of lignin separation from liquid side streams in a pulp mill

1.5 Lignin characterization and classification

1.5.1 Impact of delignification process on the structure of the lignin

1.5.2 Radar tool for lignin classification on the perspective of it valorization

1.5.3 Improving and recognizing the lignin quality in biorefineries

1.6 Bark: an unrecognized valuable lignocellulosic material

1.6.1 Chemical composition. The particular case of Eucalyptus globulus bark

1.6.2 &n

bsp; Current and potential commercial products from bark



2. Integrated process for vanillin and syringaldehyde production from kraft lignin

2.1 Oxidation of lignin with O2 in alkaline medium

2.1.1 Batch oxidation

2.2.1.1 Kinetics and modelling of reaction in batch reactor for vanillin production

2.2.1.2 Syringaldeh

yde as the main product from hardwood lignins

2.2.1.3 Oxidation of Eucalyptus globulus kraft pulping liquor versus kraft lignin

2.1.2 Oxidation in co-current gas-liquid flow structured packed reactor

2.1.2.1 Experimental and modelling of vanillin production

2.1.2.2 Experiments of oxidation of hardwood pulping liquor and lignins

2.2 Separation processes

2.2.1 Membrane separation of

phenolates from depolymerized lignin

2.2.2 Ion exchange process for vanillin recovery

2.2.3 Adsorption and desorption of vanillin and syringaldehyde onto polymeric resins

2.3 The integrated process for complete lignin valorization into phenolic compounds and polyurethanes



3. Polyurethanes from recovered and depolymerized lignins

3.1 Overview of strategies and opportunities

3.2 Lignin use as such

&n

bsp; 3.2.1 Reactive filler in polyurethane foams

3.2.2 Additive to enhance biodegradability

3.2.3 Co-monomer to produce elastomers

3.3 Lignin use after chemical modification

3.3.1 Overview of lignin liquefaction processes

3.3.2 Oxypropylation as a viable route to produce liquid polyols

3.3.3 Screening of opportunities for oxypropylated lignin

3.3.4 Production of rigi







d polyurethane foams

3.4. Lignin use after depolymerization

4. Polyphenols from bark of Eucalyptus globulus

4.1 Composition of polar extracts

4.2 Extraction of polyphenols

4.2.1 Water and alkaline extractions: selectivity and concentration strategy

4.2.2 Ethanol/water extraction: process optimization for phenolic compounds

4.2.3 Screening for valuable applications: tanning proprieties and biological activity

4.3 Fractionation of ethanolic extracts from Eucalyptus globulus bark

4.3.1 Membrane processing

4.3.1.1 Resistance and cake build up analysis in the ultrafiltration of ethanol:water extract (80:20 v/v)

4.3.1.2 Application of ultrafiltration and nanofiltration to etanol/water extract (52:48 v/v)

4.3.2 Diafiltration and adsorption for purification and concentration of polyphenols



5. Conclusions and future perspectives



6. References
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
Lignin conversion by oxidation;Bark valorization;Syringaldehyde production;Vanillin production;Bioactive polyphenols;Polyurethanes from renewable sources;Integration of biorefinery in pulp mills;Structured packed bubble reactor;Adsorption and ion exchange process;Membrane separation;Wood Science and Technology